Quantitative Techniques for Competition Analysis
An Overview, with Application to Z Energy–Chevron

Lydia Cheung
lydia.p.cheung@aut.ac.nz
www.linkedin.com/in/lydiapikyicheung

Auckland University of Technology
Presentation for LEANZ

9 September, 2015
Introduction

1. Market Definition
2. Modern Demand Estimation
3. Merger Simulation
4. Concluding Remarks
What is “Quantitative Analysis”?

Primary goal: To document quantitative evidence

- E.g. Pricing patterns; market shares; sales patterns; discounts; profit margins; effects of entry / exit

This may or may not involve statistical / econometric analysis

- E.g. Demand estimation; cost function estimation; merger simulation

The latter involves more assumptions, because you are making further predictions
(1) Market Definition
(2) Modern Demand Estimation
(3) Merger Simulation

This is **not** a clean, linear one-way street!

Rather, there’s lots of back-and-forth between (1) & (2)
2 excellent books:

I reference mainly the first one
Contents

1. Introduction
2. Market Definition
3. Modern Demand Estimation
4. Merger Simulation
5. Concluding Remarks
Market Definition: An Old Enemy

Usual first step in merger analysis

Goal: Identify all relevant competitors

Needed for later calculations of: market shares; concentration index

Intuitive, quick, easy methods are preferred

But still there’s much debate!

(As competition policy moves away from “form-based” reasoning towards “effects-based” analysis, market definition is no longer all-important)
What Defines an Antitrust Market?

2 sides of the same coin:

- **Constraints from competitors**: on each others’ price or other dimensions of competition, e.g. capacity, quality, innovation

- **Market power**: How much can a firm raise price above competitive level?

Limits to market power:

- **Demand Substitutability**: If price increases by x%, how many consumers switch away, and to what products?

- **Supply Substitutability**: If price increases by x%, can other producers switch to produce this product?
Quantitative Evidence: Price Correlation

Identical products should have identical prices (plus any “transport cost”)

(Arbitrage would eliminate any price difference)

If products are similar (but not identical), then their prices should be similar (plus any “substitution cost”) and should co-move

Caution: Other factors can also cause high price correlation:
- Supermarkets’ regional / national pricing strategy
- Common cost change (e.g. oil price)
- Common demand change (e.g. hotel & rental cars in holiday)
- Spurious correlation: If both time series have a trend, their correlation will approach ±1
Cleaner source of price variation:

Exploit an *exogenous change* (e.g. marketing experiment) to the price of *one* of the merging goods

(“Exogenous” = unanticipated price change that is not a result of a common demand / cost change)

Simple way to gauge *consumer response* (own- and cross-price elasticities) without further assumptions on demand model
Diversion Ratios: “If P_A increases, what fraction of lost sales will go to product B, C, etc.?"

2 ways to measure:

1. **Revealed Preference**: look at individual purchases / market shares data, and how that depends on prices, product characteristics, consumer demographics, etc.

 If product is brand new (e.g. iPhone), there is no historic data

2. **Stated Preference**: Survey customers and ask them to choose in hypothetical situations

 Survey design details matter, e.g. clear description of alternatives, without being overwhelming
If competitors \(B, C \) impose a price constraint on \(A \), then they are “worth monopolizing” for firm \(A \).

Could a hypothetical monopolist implement a “small but significant non-transitory increase in price” (5-10% per year) profitably?

The antitrust market is the smallest set of products over which a hypothetical monopolist can implement a SSNIP.

Data we need:
- Products’ price-cost margins, at actual competitive prices
- Candidate market’s own-price elasticity

So we don’t need a full set of cross-price elasticities.
“Cellophane Fallacy”

U.S. vs. DuPont (1956). 2 possible market definitions:

<table>
<thead>
<tr>
<th></th>
<th>“All cellophane paper”</th>
<th>“All flexible packaging material”</th>
</tr>
</thead>
<tbody>
<tr>
<td>DuPont market share</td>
<td>75%</td>
<td>25%</td>
</tr>
</tbody>
</table>

At **prevailing prices**, the court found lots of substitution from cellophane to other materials

Thus, the court chose market as “all flexible packaging material”

Problem: DuPont is already monopolizing the cellophane market

Economic theory: a monopoly operates at the **elastic** portion of the demand curve. Of course you find **more** substitution there

So, SSNIP gives you a **bigger** antitrust market if you start with monopoly prices, rather than competitive prices
Critical Loss Analysis

“How much do sales need to drop to render a 5% price increase unprofitable?”

(Similar in spirit to SSNIP)

Actual loss usually not equal to critical loss

If actual loss > critical loss, 5% price increase is unprofitable, then the market is deemed larger

Naturally, if current margin is large, critical loss will be small. So it suffers from the same “Cellophane fallacy” as SSNIP!

Economics lesson: Margin and elasticity are **not** independent! For profit-maximizing firms, they are **inversely** related
Proposed Z Energy–Chevron Merger

Actual or potential overlaps:

1. Processing capacity at NZRC (New Zealand Refining Company)

2. Services from distribution assets:
 - Coastal shipping; Pipelines; Truck loading facilities; Road transport; Storage terminals; Aviation fuel refuelling

3. Wholesale petroleum products to other fuel suppliers

4. Commercial supply:
 - Aviation fuels; Marine fuels; Bitumen; Petrol; Diesel; Kerosene; Lubricants

5. Retail supply:
 - Petrol; Diesel; Kerosene; Lubricants

6. Franchise market for independent retailers
New Zealand’s Refined Products Supply Chain

1. Procurement
 - Crude Oil Supply: ~75% of New Zealand’s total refined product requirement
 - Refined Product Supply: ~25% of New Zealand’s total refined product requirement
 - Infrastructure sharing through joint venture arrangements / joint ownership between some or all of Z Energy, BP, Caltex and Mobil

2. Refining
 - Refining NZ is publicly listed on the NZX Main Board (Share code: NZR)
 - Z Energy, Caltex, Mobil and BP have ownership interests in, and processing agreements with, Refining NZ
 - Small scale but efficient, reliable refinery capable of producing a range of refined products
 - Typical crude intake of 41 to 42 million barrels

3. Primary Distribution
 - 165km Refinery to Auckland Pipeline (RAP) owned by Refining NZ
 - Two coastal tankers (including Kaitokai) scheduled by joint venture between Z Energy, BP, Caltex and Mobil
 - Wharf to Auckland Airport Pipeline (WAP) owned by joint venture between Z Energy, BP, Caltex and Mobil

4. Terminal Storage
 - 13 terminal storage locations
 - Joint venture and off-site arrangements between Z Energy, BP, Caltex and Mobil in key locations
 - Gill terminal at Mount Maunganui
 - Arrangements for delivery to retail service station sites and commercial customers primarily outsourced to logistics providers
 - Awanui powered barge and small towed barge (later chartered by BP) for delivery of marine fuels in Auckland harbour

5. Secondary Distribution

6. Retail Marketing
 - Over 1,200 retail stations across NZ which primarily sell petrol and diesel

6. Commercial Marketing
 - Delivery direct to customers via retail service stations or via truck stops
 - Sale of petrol, diesel, aviation fuels, fuel oil and bitumen

(From: http://www.comcom.govt.nz/dmsdocument/13371)
Market Definitions in Z Energy–Chevron

3 dimensions:
- **Vertical**: upstream services markets; downstream output markets
- **Horizontal**: different petroleum products among outputs
- **Geographic**: especially in retail markets

Product market definitions relatively straightforward: no obvious substitutes for upstream services or petroleum products

Geographic markets typically defined by some driving radius
- Prof. Hausman uses 2km and 5km for retail markets
- More sophisticated approach may look at traffic patterns, e.g., highway vs. residential area have different catchment areas
Isn’t Demand Pretty Straightforward?

This graph from EC101 is not “wrong”, but it doesn’t address:

- **Discrete** purchases (e.g. one car / house)
- Demand in real life is more often **non-linear**
- Abundance of **substitutes** in consumer products, and their effects on demand of this product
- Consumers have **different tastes**
- How to estimate this curve from **observed data** \((P, Q)\)
In most retail settings with an abundance of products, each with many substitutes, we estimate a demand system that includes all substitute products, not only that single product’s demand.

The demand system captures all inter-product effects.

Of course, you need \((P, Q)\) data from all products involved.

2 kinds of demand systems:
- Continuous Choice Models
- Discrete Choice Models
“Toy” Example: 3 orange juice products A, B, C

Simplest demand system: 3 equations; $3 \times 3 = 9$ parameters

\[
\begin{align*}
Q_A & \text{ as a function of: } P_A, P_B, P_C \\
Q_B & \text{ as a function of: } P_A, P_B, P_C \\
Q_C & \text{ as a function of: } P_A, P_B, P_C
\end{align*}
\]

More sophisticated version: AIDS (Almost Ideal Demand System)
- restricts model parameters to agree with consumer choice theory
- includes consumer income and product expenditure share

Warning: If you have 100 products, you will need 100 equations and 10000 parameters!!
Discrete choice models’ major advantages:

- **Scalable**: no more overwhelming number of parameters
- Able to recognize **product characteristics**

E.g. Orange juices have 2 characteristics: “sweetness”; “pulpiness”

Discrete choice model for orange juices has only **1 equation**:

$$Q_i \text{ as a function of: } P_i, \text{ all other prices, sweetness}_i, \text{ pulpiness}_i$$

Usual functions used: “Logit” or “Probit”
“Logit” & “Probit” are not just purely econometric models

Both have a deep “behavioral foundation”: They model consumers choosing the product that gives them highest utility

Utility is a function of the product’s price and characteristics

Thus, a product with big market share must have characteristics that appeal to consumers

“Fancy logit” models allow customers to have different tastes

These have become the established workhorse in economics literature
What Can You Do Next?

A well-estimated demand system allows you to:

- Estimate own- and cross-price **elasticities**
 - “If \(P_A \) increases by 1%, how much do \(Q_A, Q_B, Q_C \) change?”

- Use cross-price elasticities to gauge how similar / substitutable the products are, which helps:
 - check the **market definition**
 - gauge how **anti-competitive** merger is

- Calculate change in consumer surplus for **welfare** analysis

- Perform **counterfactuals** / “**experiments**”
 - “How much price increase will the merger bring?”
 - “How much cost saving is needed to cancel out this price increase?”
In each market (e.g. “petrol retail supply in Mt. Wellington”), demand can be estimated with either:

- **Individual-level purchase data** with prices, consumer demographics

 This is the ultimate luxury: makes estimation easy

- **Aggregated market share data** with prices, in daily / weekly / monthly frequency

 Purchase decisions less transparent; more to tease out. Biggest innovation in empirical I.O. (Industrial Organization) in the past 20 years is developing techniques to do so
Are Z and Chevron particularly close substitutes (i.e. large cross-price elasticity) in some markets?

Merger of 2 close substitutes is more anti-competitive

Estimate loss in consumer welfare if Z and Chevron raise price by $x\%$
Contents

1 Introduction
2 Market Definition
3 Modern Demand Estimation
4 Merger Simulation
5 Concluding Remarks
What is “Structural” Merger Simulation?

3 ingredients for modelling a market:

(1) Demand system
(2) Firms’ cost structure / Supply
(3) Mode of competition / market structure

In the simplest merger, only (3) changes

To simulate a merger:

1. Estimate demand system and firms’ costs using pre-merger data
2. Compute post-merger market equilibrium, using new market structure, but same demand parameters and firms’ costs
“Toy” Example

3 single-product firms \((A, B, C)\) in price competition pre-merger

Now firms \(A, B\) propose to merge

Express ownership structure with a \(3 \times 3\) matrix:

<table>
<thead>
<tr>
<th></th>
<th>Pre-merger</th>
<th>Post-merger</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(A) 1 0 0</td>
<td>(A) 1 1 0</td>
</tr>
<tr>
<td></td>
<td>(B) 0 1 0</td>
<td>(B) 1 1 0</td>
</tr>
<tr>
<td></td>
<td>(C) 0 0 1</td>
<td>(C) 0 0 1</td>
</tr>
</tbody>
</table>
Ingredient (3) market structure is also the hardest to pinpoint

Is it primarily **competition** in:
- Price? (e.g. petrol)
- Capacity? (e.g. communication network)
- Advertising? (e.g. music albums)
- Innovation? (e.g. tech gadgets)

Could there be **cartel / collusion**?

Any interesting **dynamics**? Or **vertical** relationships?

Alternatively, are outcomes determined primarily through **auctions**?

Or **negotiations**?
Merger simulation necessarily relies on **structural assumptions** on: demand, costs, and market structure.

If you want to **extrapolate** from existing data, of course you need to write down a model to direct where the extrapolation goes!

Spectrum on “comfort level” with assumptions:

Agnostic | natural experiments | SSNIP etc. | merger simulation | Structural

In reality, it seems that:

- Not stating assumptions explicitly is not satisfactory scientifically
- But it gives legal advantage, making it less prone to challenge!
A merger simulation is a “counterfactual” experiment:
What will market outcomes be, if only one thing changes, while all other parameters stay constant?

This is different from a market forecast, which tries to incorporate all changes, e.g. seasonal variations or demand / cost changes

Merger retrospective: Comparing actual post-merger outcomes to merger simulation results

A meaningful retrospective should filter out changes in demand and cost in post-merger period, before comparison
In every market where Z Energy and Chevron overlap, you could conduct a merger simulation. Then you can answer:

- “How much price increase does the merger bring?”
- “How much cost saving is necessary to cancel out this price increase?”
- “Is this cost saving within plausible range?”

For retail markets, it’s pretty safe to assume price competition.

Much less obvious in other markets: upstream services; wholesale; commercial supply; franchise.

(Upstream services using distribution assets are governed through joint venture agreements)
Other Aspects of Z Energy–Chevron Merger

Cost influence / vertical exclusion
- Can the merged firm exert market power in the upstream service market, so to increase rivals’ cost or limit their access?

Countervailing power
- Do big wholesale / commercial customers exert enough pressure on price?

Entry & expansion
- Do we have potential entrants? Is it easy to start supplying?
- Do current competitors have capacity to expand?

Coordination / collusion
- Does having one less competitor make price coordination / collusion easier?
Perfection is Not the Goal

No econometric study is “perfect”

You can never be absolutely sure that your result is the “truth”; but this does not mean you give it zero weight

Same as most statistical analyses, the biggest difficulty is in making good judgments on many intermediate steps along the way

Econometric techniques diffuse from academic literature to antitrust practice: Discrete choice models gain wide acceptance, in both screening and ex-post analysis; often as ammunition against less sophisticated models